If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-4w-224=0
a = 5; b = -4; c = -224;
Δ = b2-4ac
Δ = -42-4·5·(-224)
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{281}}{2*5}=\frac{4-4\sqrt{281}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{281}}{2*5}=\frac{4+4\sqrt{281}}{10} $
| 1-7v=-6 | | (4m-9)(m+3)=-18 | | -56=4-4x | | (19.00+2.50x)=(11.00+3.75x) | | 3=3(v-1) | | b+32=70 | | (19.00+250x)=(11.00+3.75x) | | -8x^2=-2x-15 | | -16x^2-4x+2=0 | | 3x+20=-28 | | 52-v=180 | | 4k^2-k-7=0 | | x-125=375 | | (x-3)-2(x+6)=-5{-10}{-4}{8} | | 200=140-w | | y+93=121 | | 3w^2-w-6=0 | | 11^(6*x)=(38) | | 47=3u+14 | | 1=2x-13 | | -5/3x+4/7=-1/2 | | -2x^2-4x+160=0 | | −2x^2+32x−120=0 | | 3(7x-4)^2+6=33 | | 4(w+8)^2+12=120 | | (s-1)^2=64 | | -38=5u+7 | | (8n-4)^2=25 | | (y+5)(y-1)=-8 | | 4.6y=55.2 | | p^2=4p+45 | | -3(5x+2)=7 |